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Abstract-There are some errors in the direct boundary-integral equation formulation in terms of
displacements or velocities, of problems in planar e1astoplasticity and thermoelastoplasticity that have been
recently reported in the literature. In particular, lack of proper care in reducing the correctly formulated three
dimensional problem to the case of plane strain has resulted in incorrect expressions for certain kernels that
appear in the integral equations. A correct direct boundary-integral equation formulation for the plane strain
problem in thermoelastoplasticity is presented in this paper.

Several researchers [1-6] have used the boundary-integral equation method to solve problems in
solid mechanics including elastic, plastic and, in some cases thermal strains. In these problems it
is assumed that the total strain rate E/j can be decomposed according to the equation

(1)

where Eij is related to the stress rate u/j by Hooke's law, E~ is the plastic strain rate and Er= at5/j

is the thermal strain rate. Here a is the coefficient of linear thermal expansion, T is the
temperature, 51j the Kronicker delta and, for a typical variable, q = (aq I at) = (dq Idt) where t is
time. The total strain rate is related to the displacement rate ul by the kinematic relation

(2)

The plastic strain is usually assumed deviatoric so that

(3)

Combining (1), (2) and (3) with Hooke's law and the equations of equilibrium, we can write
Navier's equations for the three dimensional problem as

(4)

where R is the prescribed body force per unit volume, v is Poisson's ratio and G the shear
modulus. The boundary conditions usually comprise prescribed displacements on some parts of
the surface and prescribed tractions on the rest although mixed-mixed problems can also be
considered.

The boundary-integral formulation for the three dimensional problem gives a solution of (4) in
the form[I,2]

where Tj is the traction vector, V is the volume of the body, S its surface, and P and Q are
surface points and p and q are interior points respectively. The kernels UIl> Tlj and Ijld are
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obtained from the solution to Kelvin's problem of a point load in an infinite elastic body and are
given in Refs. [I, 2] and other papers, Please note that eqn (5) and the definition of I w in this paper
conform to Mendelson [2].

The stress rates are obtained by differentiating (5) at a load point and using

The result is

UIj(p) = Is [Vljt(p, Q) 'MQ) - ~Jt(p, Q)Ilt(Q)] dSQ

+ Iv Vljk(P, q)Fk(q) dVq - 20Elj(p)-3Kat(p)S/j

+ Iv Ilw(p,q)[E:lq)+81<1at(q)]dVq

where K is the bulk modulus

o
Illkl =41T(I- V)S3 [3(1- 2v )(8ljs.ks., +81<1s./sJ)

+ 3v(8usJs.t + SltS.IS.1 + 81kS,IS,I + SJIS,IS.k) -15s,lsJs,tS.I

(6)

(7)

(8)

(9)

(10)

S is the distance between two points p and q, S ,I =(iJs IiJx,lq), the differential at a field point and nl
is the outward unit normal to the surface S. In all the above formulae, the range of subscripts, of
course, is 1, 2, 3.

What we have presented so far here is well known. The difficulty arises, however, when we
want to determine analogous formulae for plane strain (En:: 0). It is here that there are errors in
the literature [2-4] and it is the purpose of this paper to point these out and correct them.

The case of plane strain (En = 0)
Navier's equations for the displacement rates have the same form as (4) with i, j, k :: 1,2. The

boundary-integral formula analogous to (5), however, now becomes

u/(p) =Ie [UtJ(P, Q)iJ(Q) ~I(P, Q)uJ(Q)] dCQ +LUt/(p, q)fj(q) dAq

+L[tw(p,q)Eli.(q)+t/1<I(P,q)8~t(q)]dAq (i,j,k::I,2) (ll)

where A is the area of cross section of the body, C the boundary of A, and the kernels are given
by

1
Ut/:: - 81T(l- 1')0 [(3 - 4v) Ins l)lj - s,/s,d

Tlj = - 41T(l ~ I' )s [[(l- 21')80 +2s.lsJJ:: +(1- 21')(sJnl - s,ln/)]

t w :: - 41T(l~ v)s [(1- 21')(81/s.t +S1<IsJ) - 8jks.1 +2s.,sJs.t ]

tJkl = - 41T(l ~ I' )s [(1- 2v)(81/s. k +8tls,J) - (1- 3v)8Jts.1 +2s.,s,/s,d.

(12)

(13)

(14)

(15)
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Also, let us note that the kernel used in [2] from Kelvin's solution is

This can be proved in two ways.
Proof one. Proceeding as in Mendelson[2] we can show that at an interior point

Ui = Ie (Uij'i"j - Tiiui)dC +LUiJFj dA

+L[20Uii'ki fk+2g~ ;,,;) UIMat] dA.

Using the symmetry of plastic strain

and since Sik is symmetric and SikSik = 2

Recalling from Kelvin's elastic solution the equation
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(16)

(17)

and defining the coefficients of ifk and Sik in the above equations as ~ikl and f ikl respectively, we
obtain

(18)

Some further algebraic manipulation gives (14) and (15).
Note that the contribution of Iiki - ~iki in (11) does not vanish, since, for plane strain,

ilk8ik = ifl + i~2:1- O.
Proof two. This follows the method outlined by Swedlow et al. [1] and by Mendelson in the

Appendix of [2].
Swedlow et al.[1] note correctly that for the three-dimensional problem

(i,i, = 1,2,3) (20)

where the starred fields refer to Kelvin's elastic solution and V. is a small sphere surrounding the
load point p. For the plane strain problem, however, even though (6) is true with i, j = 1,2; (20) is
no longer true. This is because, using (1), (2) and (6) we can immediately prove that

. - 20" 20" '. ( 20" )('P T')",
(J'i;- Ei;+1_2"Ekk(J'i,;+ 1-2" Ekk- a 01; (i,i, k = 1,2) (21)

and of course the starred field, which is the solution of an elastic problem, satisfies a similar
equation with the last term in the right of (21) set to zero. Thus, (20) assumes the new form
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(i, j, k, I = 1, 2).

(22)

The last term in (22) can be written as

where ek represents a traid of orthogonal unit vectors at the load point in the Kelvin problem
along which directions loads are applied.

When these terms are included in Mendelson's proof in [2], we obtain (11) with the
appropriate kernels given by (18) and (19).

The stress rates are obtained by direct differentiation of (11) resulting in

where

cTli(P) = Ie [V/ik(P, Q)'l'k(Q)- T;ik(P, Q)Uk(Q)] dCQ

+LV/ik(p,q)Fk(q)dAq -2Gi'ij(p)-3KaT(p)8Ii

+ LIlik/(P, q )ir,(q) dAq+LIiik/(p, q )8k1aT(q) dAq

tiikl = I/jk/ + 21T(1~ v )S2 {4vs./sJ8kl - 2v81j8kl }

I/jkl =:: I/ik, + 21T(1~ v)s2{-2vs./sJ8kl + v8lj8kl }

(i, j, k, 1= 1,2) (23)

(24)

(25)

(26)

(27)

(28)

The case of plane stress «(1Z2 = 0)

The case of plane stress is included here for completeness. Navier's equation for displacement
rate for plane stress has the form [2]

. ( 1+v)' __ F; 2 .P ~. P 2(1 + v) T'
Ui,jj + 1- V Uk,kl - G + £/i,i+ 1- v £kk,/+ (1- v) a ,I (i, j, k = 1,2), (29)

The solution for the displacement rate has the same form as (5) (with the range of subscripts
1,2) and the kernels Uli' T;i and Iik/ are given by (12), (13) and (16) respectively with v replaced
by ji v/(1 +v).

The stress rate equation assumes the form

(i,j,k,l =:: 1,2)

cTlj(p) = Ie [V/jk(P, Q)'l'k(Q)-T;jk(P, Q)uk(Q)JdCQ +LVijdp,q)Fk(q)dAq

+ LI/jk/(p,q)[ir~q)+8k,at(q)]dAq

- 2GifMJ) - (1~G;ji)ifAP )8ij - (1 ~~ji)aT(P )81j (30)
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where the kernel IifkJ has the same form as (28) with p replaced by ii and, as before,

Vilt = -lilt

Lit = IiJkln,.
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(31)

(32)

Acknowledgements-This research was supported by Contract No. E(l1-1)-2733 of the Energy Research and Developement
Administration, Washington, D.C., with Cornell University, Ithaca. New York. Sincere thanks are expressed to Mr. V. Kumar
for many useful discussions.

REFERENCES
1. J. L. Swedlow and T. A. Cruse. Formulation of boundary integral equations for three-dimensional elasto-plastic flow. Int.

J. Solids Structures 7. 1673 (1971).
2. A. Mendelson, Boundary-integral methods in elasticity and plasticity. Report No. NASA TND-74l8 (1973).
3. A. Mendelson and L. U. Albers, Application of boundary integral equations to elastoplastic problems. In

Boundary-Integral Equation Method: Computational Applications in Applied Mechanics (Edited by T. A. Cruse and F. J.
Rizzo), 47. ASME (1975).

4. P. C. Riccardella, An implementation of the boundary-integral technique for planar problems of elasticity and
elasto-plasticity. Ph.D. Thesis, Carnegie-Mellon University (1973).

5. W. Rzasnicki. Plane elasto-plastic analysis of a V-notched plate under bending by boundary integral equation method.
Ph.D. Thesis, University of Toledo (1972).

6. W. Rzasnicki, A. Mendelson, L. U. Albers and D. D. Raftopoulos, Application of boundary integral equation method to
elasto-plastic analysis of V-notched beams. NASA TND-7637 (1974).


